

MODELLING OF FLEXIBILITY AND TECHNOLOGICAL PROGRESS

Angelo Martino, TRT Trasporti e Territorio srl

Brussels, 17th May 2017

EMP-E: Energy Modelling Platform for Europe

The Reflex project

- The core objective of the REFLEX project is to analyse and evaluate the development towards a low-carbon energy system with focus on flexibility options in the EU up to the year 2050 to support a better system integration of renewables.
- The analysis comprises a comparative assessment of all relevant energy technologies as to the related impacts and the sustainability performance on the environment, society and economy based on a cross-sectoral perspective.
- The assessment is based on a modelling environment that considers the full extent to which current and future energy technologies and policies interfere and how they affect the environment and society while considering technological learning of low-carbon and flexibility technologies.

The intermittent feed-in from Renewable Energy Sources

REFLEX Project Scope and Applied Approaches

Δ

The Energy Models System (EMS) provides model based decision support tools for different actors

REFLEX-EMS: The Experience Curve Tool

- Experience curves for selected energy technologies
- Special attention given to determination of uncertainty ranges of progress ratio's
- For technologies that depend strongly on either the available geographical potential (e.g. wind onshore, offshore, biomass) or on raw material prices, the experience curve ids decomposed using a multi-level experience
- Determination of the most important factors behind cost development, such as variations in steel or oil prices, as well as scale effects
- The experience curves are incorporated in the sectoral models as well as in the LCA-Tool

REFLEX-EMS: The sectoral model based decision support tool

Assessing Impact on Environment & Society πESA LCA – Tool Calculates changes of • A transparent methodological framework for environmental states in relation assessing environmental, social and economic impacts in modelled future energy systems using a life-cycle to air quality and human health for different energy scenarios approach that will be elaborated in the project • The framework is applied for life-cycle inventory data for these systems, coordinated with the experience These include concentration curve approach and deposition maps of SO2, NOx, PM, Hg, as well as health The framework assesses the external costs of impacts of people's long-term environmental impacts, including the external exposure to fine particulate associated with direct combustion emissions (PM_{25}) air pollution

Possible Scenarios for Shaping the European Energy System – Focus in REFLEX

CENTRALIZED	Fossil and nuclear based energy system		Existing System		Mod-RESFlex Scenario (central) GHG emission reduction: • project result (explorative approach) RES-share in power generation: • ~55% in 2050*	High-RESFlex Scenario (central)GHG emission reduction:• ~ -80% in 205020RES-share in power generation:• 80-90% in 2050 • trend to centralized wind power		European energy system is based on 100% renewable energy sources
Conventional			Focus in REFLEX	High-RESFlex Scenario (decentral) GHG emission reduction: • ~ -80% in 2050 RES-share in power generation: • 80-90% in 2050 • trend to decentr- alized solar power	1	Renewable		

1) EU Reference Scenario 2016 (Capros et al. 2016) 2) EC Roadmap for moving to a competitive low carbon economy in 2050 (COM 2011/0112)

Angelo Martino, TRT

Scenarios to Determine the Required Flexibility

Framework conditions	Source	Less ambitious	More ambitious
Population	Population growth (CAGR) until 2050 EU Reference Scenario 2016	D Hi	Lo
Economic growth	GDP growth (CAGR) until 2050 EU Reference Scenario 2016	Hi	Lo
Fossil fuel prices	Wholesale prices in 2050 EU Reference Scenario 2016	Lo	Hi Mod- RESFlex
CO ₂ prices	EUA prices in 2050 EU Reference Scenario 2016 & REFLE	Lo	Ні
Policy targets			RESFlex
GHG emissions reduction	Overall emissions reduction in 2050 compared to 1990	Lo	Hi
RES share	Share or renewable energy in power generation in 2050	Lo	Hi
Energy efficiency	Share of technical potential exploite in 2050	d Lo	Hi

Angelo Martino, TRT

Partners of the REFLEX-Project

Angelo Martino, TRT

Thank you!

Angelo Martino TRT Trasporti e Territorio srl

www.reflex-project.eu

0		

The REFLEX project has received funding from the European Union's Horizon 2020 research and innovation programme [GA-No. 691685].