

One-versus two-factor experience curves

NOAH KITTNER, FELIX LILL, DANIEL KAMMEN

8 NOVEMBER 2017

REFLEX - EXPERT WORKSHOP, KARLSRUHE INSTITUTE OF TECHNOLOGY

- Learning rates typically relate cost reduction of new technology to key factors
 i.e. cumulative installed capacity, units of output produced
- Typical experience curves use one-factor
- However, new multi-factor models are emerging

- One-factor experience curves usually explain decreased costs with increases in production volume (e.g. economies of scale)
- May underestimate surges of innovation or breakthrough discoveries (especially for high-tech products)
- Simultaneously, could overestimate the cost of deployment measures
- Challenge: data (e.g. for innovation) is lacking and proxy information often necessary

Qiu, Y., & Anadon, L. D. (2012). The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization. Energy Economics 34(3), 772-785

Two-factor learning for solar

One- and two-factor learning curves

Renewable & Appropriate Energy Laboratory

Range of reported one-factor and two-factor learning rates for electric power generation technologies.

Technology and en-	Technology and en- ergy source factor ^a No. of studies No. of studies with one factor factors	One-factor mo	One-factor models ^b Two		Two-factor models ^c			Years covered	
ergy source		factors	Range of learning rates	Mean LR	Range of rates for LBD	Mean LBD rate	Range of rates for LBR	Mean LBR rate	across an studies
Coal									
PC	4	0	5.6-12%	8.3%	-	-	-	-	1902-2006
$PC + CCS^{d}$	2	0	1.1-9.9% ^d		-	-	-	-	Projections
IGCC ^d	2	0	2.5–16% ^d		-	-	-	-	Projections
IGCC+CCS ^d	2	0	2.5–20% ^d		-	-	-	-	Projections
Natural gas									
NGCC	5	1	-11 to 34%	14%	0.7-2.2%	1.4%	2.4-17.7%	10%	1980-1998
Gas turbine	11	0	10-22%	15%	-	-	_	-	1958-1990
NGCC+CCS ^d	1	0	2–7% ^d		-	-	-	-	Projections
Nuclear	4	0	Negative to 6%	-	-	-	-	-	1972-1996
Wind									
Onshore	12	6	-11 to 32%	12%	3.1-13.1%	9.6%	10-26.8%	16.5%	1979-2010
Offshore	2	1	5-19%	12%	1%	1%	4.9%	4.9%	1985-2001
Solar PV	13	3	10-47%	23%	14–32%	18%	10-14.3%	12%	1959–2011
Biomass									
Power generation ^e	2	0	0-24%	11%	-	-	-	-	1976-2005
Biomass production	3	0	20-45%	32%					1971-2006
Geothermal ^f	0	0	-	-	-	-	-	-	
Hydroelectric	1	1	1.4%	1.4%	0.5–11.4%	6%	2.6-20.6%	11.6%	1980-2001

^a Some studies report multiple values based on different datasets, regions, or assumptions.

^b LR=learning rate. Values in italics reflect model estimates, not empirical data.

^c LBD=learning by doing; LBR=learning by researching.

^d No historical data for this technology. Values are projected learning rates based on different assumptions.

^e Includes combined heat and power (CHP) systems and biodigesters.

^f Several studies reviewed presented data on cost reductions but did not report learning rates.

LRs for power generation

one-f two-f

- Coal: 8.3% -
- Natural gas: 14% 10%
- Wind onshore: 12% 16.5%
- Solar PV: 23% 12%
- Biomass: 11% -
- Hydroelectric: 1.4% 11.6%

- Use one-factor and two-factor models to understand value of economies of scale and innovation (time frame: 1991 - 2015)
- Develop multi-factor model to go beyond "economies-of-scale" only
- Build off work for wind turbines and solar PV (Qiu & Anadon, 2012; Zheng & Kammen, 2014)
- Patents as a representation of innovation for technological cost reduction (Griliches, 1987)

Global patent activity for LiB

Queries were conducted using the Patentscope database, part of the World Intellectual Property Organization (WIPO)

Searched for terms including "lithium and ion and (battery or batteries or accumulator or accumulators or cell or cells)"

We include patents in the manufacturing process and were inclusive of any patent that contained the search terms we determined that we found in Patentscope.

One-factor experience curve (LiB)

- (1) $P_t = \delta_0 + \delta_1 Q_t + \epsilon_t$
- (2) $P_t = \zeta_0 + \zeta_1 CQ_t + \epsilon_t$
- (3) $P_t = \vartheta_0 + \vartheta_1 I_t + \epsilon_t$

- $P_t = \log price$
- Q_t = log production volumes
- CQ_t = log cumulative production volumes
- I_t = innovation activity (cumulative patents)

One-factor experience curve (LiB)

- Lithium-ion storage is developing at faster "learning rates" than solar PV or wind
- Further investment is needed to reach \$100/kWh target by DOE

One-factor for LiB: annual production

One-factor for LiB: cum. production

One-factor for LiB: PCT patents

From one-factor to two-factors

Developing the two-factor learning curve model follows the subsequent rationale:

(1)
$$I_i = \alpha_0 + \alpha_1 Q_i + \eta_i$$

(1')
$$\eta_i = I_i - \alpha_0 - \alpha_1 Q_i$$

After introducing the residual variable to remove the correlation, the reformed Eq. 1' is inserted in Eq. 2. Further transformation gives the new coefficients γ_0 , γ_2 and γ_3 . Information on the correlation and variance inflation factor after introducing the residual variable is displayed in A3 - 4.

(2)
$$P_i = \beta_0 + \beta_1 Q_i + \beta_2 \eta_i + \epsilon_i$$

(1') in (2)
$$P_i = \beta_0 + \beta_1 Q_i + \beta_2 I_i - \beta_2 \alpha_0 - \beta_2 \alpha_1 Q_i + \epsilon_i$$

(2')

$$P_{i} = [\beta_{0} - \beta_{2}\alpha_{0}] + [\beta_{1} - \beta_{2}\alpha_{1}]Q_{i} + \beta_{2}I_{i} + \epsilon_{i}$$

$$\gamma_{0} = \beta_{0} - \beta_{2}\alpha_{0}$$

$$\gamma_{1} = \beta_{1} - \beta_{2}\alpha_{1}$$

$$\gamma_{2} = \beta_{2}$$

The final model and be found in Eq. 3 and 4.

(3)
$$P_{i} = \gamma_{0} + \gamma_{1}Q_{i} + \gamma_{2}I_{i} + \epsilon_{i}$$

(4) Forecasted price $= (\frac{10^{\gamma_{0}}}{Q_{i}^{-\gamma_{1}}})(10^{\gamma_{2}})^{I_{i}}$

One-vs. two-factor learning curves

Two-factor approach: LiB, wind & solar

Significance:

Investment in R&D and innovation are critical for battery storage to become cost-competitive with fossil fuel plants-- we could get to \$100/kWh with modest investment

Kittner, N., Lill, F., Kammen, D.M. (2017). "Energy storage deployment and innovation for the clean energy transition." Nature Energy 2 17125. 17

Model assessment and selection

		one-factor model	S	two-factor model	four-factor model
	A	В	С	Eq. 2 (leading to D)	Eq. 5
Coef 0	-3.797221***	3.79099***	4.085781***	3.797658***	1.1723533*
	(0.0651777)	(0.0531146)	(0.0334454)	(0.0542746)	(0.6300552)
Coef 1	-0.3100554***	-0.270016***	-0.5407248***	-0.3101608***	-0.2875361***
	(0.0182732)	(0.0130085)	(0.0131083)	(0.0152164)	(0.0162777)
Coef 2				-0.0000881***	-0.0001167***
				(0.0000263)	(0.000038)
Coef 3					0.2129343
					(0.146463)
Coef 4					0.2606368
					(0.1684335)
# obs	25	25	25	25	23
F	287.91	430.85.18	1701.61	213.18	137.14
Prob >	0.0000***	0.0000***	0.0000***	0.0000***	0.0000***
F					
R²	0.9260	0.9493	0.9867	0.9509	0.9682
Adj. R²	0.9228	0.9471	0.9861	0.9465	0.9612
BIC	-26.17094	-35.62775	-69.0026	-33.21648	-35.22165
∆BIC	0	9.4568	42.8317	7.0455	9.0507

A: Annual production

- Adj. R²: 0.9228
- BIC: -26.17094

B: Cumulative production

- Adj. R²: 0.9471
- BIC: -35.62775

C: Innovation / PCT patents

- Adj. R²: 0.9861
- BIC: -69.0026

D: two-factor

- Adj. R²: 0.9465
- BIC: -33.21648

Forecasted prices: two-factor model

Year	Forecast: consumer cells	EV/ES cells	EV/ES battery pac
2016	124.15	155.00	202.8
2017	109.18	136.31	178.4
2018	96.38	120.33	157.5
2019	85.55	106.81	139.8
2020	76.03	94.92	124.2
sensitivity range	(66.17-88.32)	(82.61-110.27)	(108.13-144.33

Sensitivity analysis

Kittner, N., Lill, F., Kammen, D.M. (2017). "Energy storage deployment and innovation for the clean energy transition." *Nature Energy* 2 17125. 20

Conclusion

- Intermittency is large-scale problem holding back solar and wind power from replacing coal
- Battery storage may provide innovative technology to "unlock" baseload renewable electricity
- Multi-factor experience curve models can incorporate more and new information as a way to improve forecasting
- Caution: dangers of over-fitting, correlation versus causation, and challenges of data access
- Outcome: Multi-factor experience curves shed new light on value of R&D investment and innovation activity on renewable energy
- Highlights "co-evolutionary" aspect of innovation and deployment strategies

Research team

Noah Kittner

nrkittner@berkeley.edu +1 919-614- 8825

Felix Lill

felix.lill@cdtm.de + 49 1578 7007032

Daniel Kammen

kammen@berkeley.edu +1 510-642- 1760

Backup slides

NOAH KITTNER, FELIX LILL, DANIEL KAMMEN

8 NOVEMBER 2017

REFLEX - EXPERT WORKSHOP, KARLSRUHE INSTITUTE OF TECHNOLOGY

Relationship: average price and output

Raw materials: price and production

LiB price forecasts

LiB price forecasts

Pseudo out-of-sample approach

Pseudo out-of-sample approach					
Train Validation					
1991		$T_{o} = 2006$	T = 2015		

Results: Pseudo out-of-sample test

Year	Average price [\$]	Forecasted price [\$]	Deviation
2007	320.1	245.3	-23.0%
2008	319.3	396.9	24.3%
2009	298.3	363.0	21.7%
2010	260.9	294.7	13.0%
2011	231.8	251.7	8.6%
2012	185.8	229.8	23.7%
2013	183.1	203.0	10.9%
2014	170.2	204.7	20.3%
2015	150.0	248.2	65.4%
Mean			23.4%

Summary of key statistics

	Mean	Standard deviation	Minimum	Maximum
y_aprice	1142.466	1446.228	150	5394.66
logy_aprice (P _t)	2.7852	0.4729792	2.18	3.73
y_output	13514.85	17534.07	0.1	61487
logy_output (Qt)	3.264	1.467958	-0.9	4.8
cum_output	67087.28	96196.25	0.1	337871.1
logcum_output	3.724926	1.706709	-0.8860567	5.528751
y_pctpatents	144.28	178.1686	1	570
logy_pctpatents	1.73479	0.757657	0	2.755875
$cum_pctpatents(I_t)$	857.2	1104.121	5	3610
logcum_ pctpatents	2.405254	0.8688611	0.69897	3.557507
residual variable (η_t)	1.052853	847.7372	-709.7451	2019.939

Correlation matrix of the main variables

	logy_aprice (Pt)	logy_output (Qt)	cum_pctpatents (It)
logy_aprice (P _t)	1.0000		
$logy_output (Q_t)$	-0.9623	1.0000	
cum_pctpatents (I _t)	-0.9933	0.9644	1.0000

	logy_aprice (P _t)	logy_output (Q _t)	cum_pctpatents (It)
logy_aprice (Pt)	1.0000		
$logy_output (Q_t)$	-0.9623	1.0000	
cum_pctpatents (I _t)	-0.9933	0.9644	1.0000

Correlation matrix incl. residual variable

	logy_aprice (Pt)	logy_output (Qt)	residual variable (nt)
logy_aprice (Pt)	1.0000		
logy_output (Qt)	-0.9623	1.0000	
residual variable (nt)	-0.1558	-0.0021	1.0000

Overview of key regression results

	Equation 1	Equation 2
Coef 0	$\alpha_0 = -711.5858 * * *$ (430.2888)	$\beta_0 = 3.797658^{***}$ (0.0542746)
Coef 1	$\alpha_1 = 480.6329$	$\beta_1 = -0.3101608 **$
	(120.6356)	(0.0152164)
Coef 2		$\beta_2 = -0.0000881 ***$
		(0.0000263)
# obs	25	25
F	15.87	213.18
Prob > F	0.0006***	0.0000***
R ²	0.4083	0.9509
Adj. R ²	0.3826	0.9465

Statistical results for all four models

		one-factor models		two-factor model
	А	В	С	Eq. 2 (leading to D)
Coef 0	-3.797221***	3.79099***	4.085781***	3.797658***
	(0.0651777)	(0.0531146)	(0.0334454)	(0.0542746)
Coef 1	-0.3100554***	-0.270016***	-0.5407248***	-0.3101608**
	(0.0182732)	(0.0130085)	(0.0131085)	(0.0152164)
Coef 2				-0.0000881***
				(0.0000263)
# obs	25	25	25	25
F	287.91	430.85.18	1701.61	213.18
Prob > F	0.0000***	0.0000***	0.0000***	0.0000***
R²	0.9260	0.9493	0.9867	0.9509
Adj. R²	0.9228	0.9471	0.9861	0.9465
BIC	-26.17094	-35.62775	-69.0026	-33.21648
$ \Delta BIC $	0	9.4568	42.8317	7.0455