

LIFE CYCLE ASSESSMENT OF FUTURE ENERGY SYSTEMS -WIND POWER AS A CASE STUDY

KIT-ITAS

- Lei Xu
- Maryegli Fuss
- Witold-Roger Poganietz

REFLEX-Expert Workshop-08.11.2017

Energy system scenarios and LCA modelling

Centralized Generation

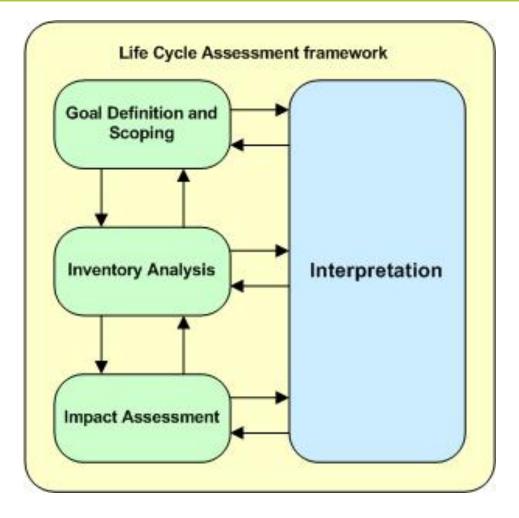
The main challenge of coupling energy system modelling and life cycle assessment

	generation (in GWh)								
	wind	w-onshore	w-offshore	solar	solar ground mounted	solar rooftop	Biomass-waste	Hydro (pumping excluded)	Geothermal and other renewables
	343.105	240.173	102.931	122.016	97.612	24.403	84.639	26.435	1.880
	1.846.984,04	1.282.348,61	564.635,43	753.903,51	603.061,17	150.842,34	441.929,07	359.070,20	30.564,03
\mathbf{X}									


Aggregated data and different data source

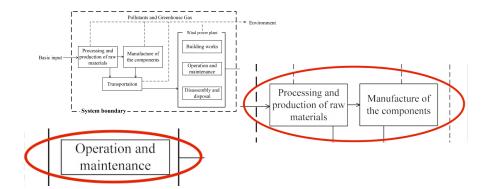
Methodology

- LCA (Life Cycle Assessment) presents the environmental impacts of a product or a service, within a whole life cycle, from material acquisition to the processes of production, utilization, recycling and disposal.
- "From cradle to grave"



Overview of Life Cycle Assessment (source: PE International, 2010)

LCA methodology



From inventory analysis to LCA impacts

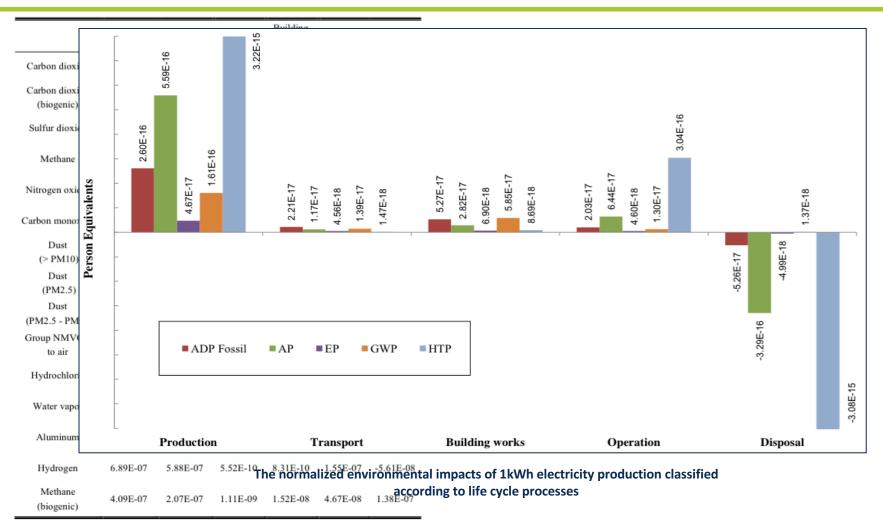
Items	Materials	Quantity (t) per transformer	Quantity (t) in total
Box-type transformers	Copper	1.6	28.8
1600KVA	Steel	5.3	95.4
(For 1.5MW wind turbines)	Silica	0.2	3.6
Box-type transformers	Copper	1.6	48
800KVA	Steel	5.3	159
(For 0.75MW wind turbines)	Silica	0.2	6
Step-up transformer	Copper	11	11
	Steel	40	40
	Silica	2.4	2.4
Cables	Copper		130.7

Quantity (t)

Quantity (t)

Materials Items Subcomponents per turbine in total Rotor Three blades Fiberglass 4.1 122.4 6.1 183.6 Resin Blade hub Cast iron 4.5 135 Pitch system Steel 1.8 54 Nacelle 5.5 165 Base frame Steel Main shaft Steel 2.2 66.3 Gearbox Cast iron 3.2 96 Steel 3.2 96 Generator Silica 0.13.6 1.4 40.5 Copper Steel 2.884.6 Yaw system Steel 2.3 69 Nacelle cover Fiberglass 0.7 21 Resin 1.1 33 Steel, low alloyed Tower Steel 55.4 1662

Components of the Goldwind S50/750kW wind turbine

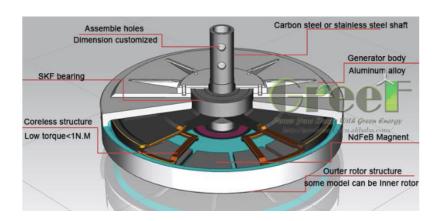

Components of transformers an	d cables
--------------------------------------	----------

Items	Subcomponents	Materials	Quantity (t) per turbine	Quantity (t) in total
Rotor	Three blades	Fiberglass	6.6	119.4
		Resin	10.0	179.2
	Blade hub	Cast iron	6.1	110.4
	Pitch system	Steel	1.9	34.7
Nacelle	Bed frame	Cast iron	5.5	98.6
	Nacelle cover	Fiberglass	1.2	21.6
		Resin	1.8	32.4
	Yaw system	Steel	2.3	40.9
Generator	Generator rotor	Magnetic steel	11.1	200.5
	Generator stator	Copper	19.9	358.9
	Fixed axis	Cast iron	3.9	70.3
	Drive shaft	Cast iron	5.2	94.4
Tower	Steel, low alloyed	Steel	101.5	1826.8

Components of the Goldwind GW77/1500kW wind turbine

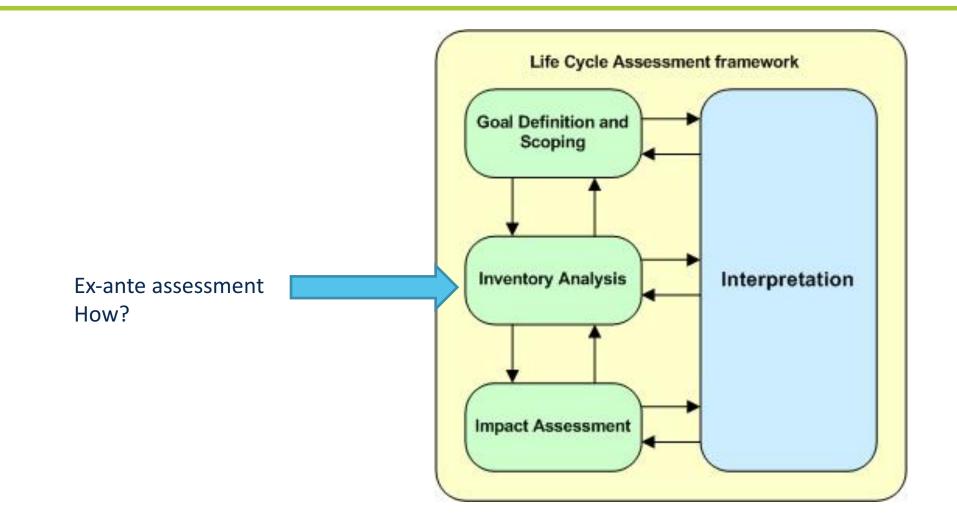
From inventory analysis to LCA impacts of wind electricity

Emissions to air per kWh electricity production

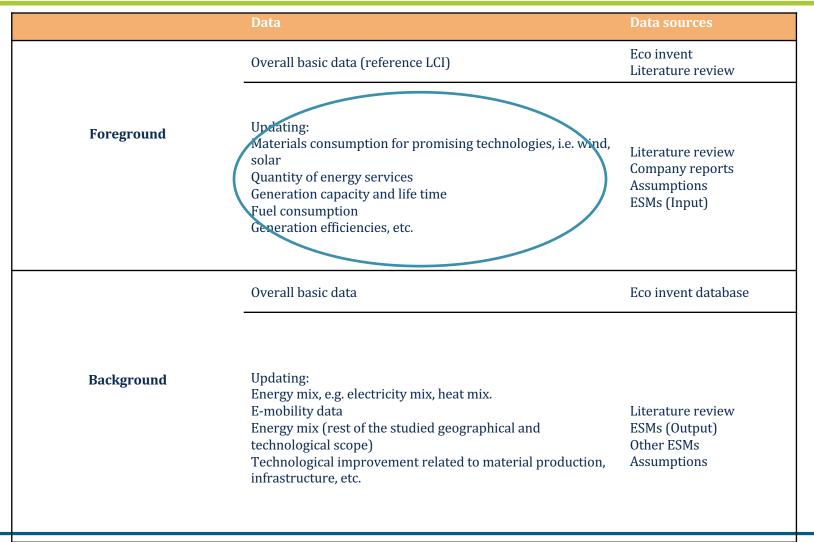


2. Update reference LCIs, e.g. wind-onshore

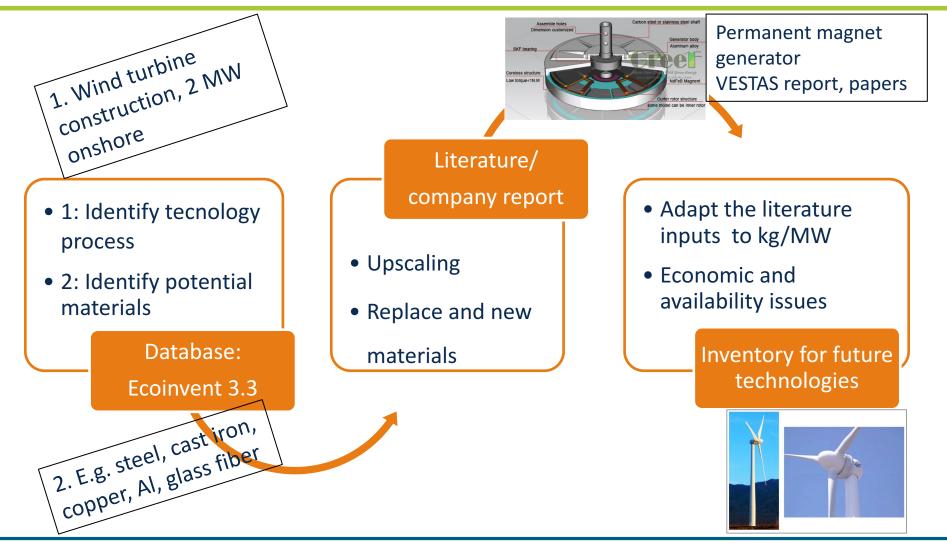
- Upscaling in the future, i.e. the size of rotor blades, etc. increase in the future, but less material per unit is consumed.
- Carbon fibers will be more competitive and staring to replace glass fibers.
- Economically, permanent magnet generators have become increasingly competitive, though wind turbines of the current generation typically do not use permanent magnets. 20% of the next generation wind turbines would use rare-earth permanent magnets.



Ex-post LCA assessment


Life cycle inventories (Utopia)

	Data	Data sources
	Overall basic data (reference LCI)	Eco invent Literature review
Foreground	Updating: Materials consumption for promising technologies, i.e. wind, solar Quantity of energy services Generation capacity and life time Fuel consumption Generation efficiencies, etc.	Literature review Company reports Assumptions ESMs (Input)
	Overall basic data	Eco invent database
Background	Updating: Energy mix, e.g. electricity mix, heat mix. E-mobility data Energy mix (rest of the studied geographical and technological scope) Technological improvement related to material production, infrastructure, etc.	Literature review ESMs (Output) Other ESMs Assumptions

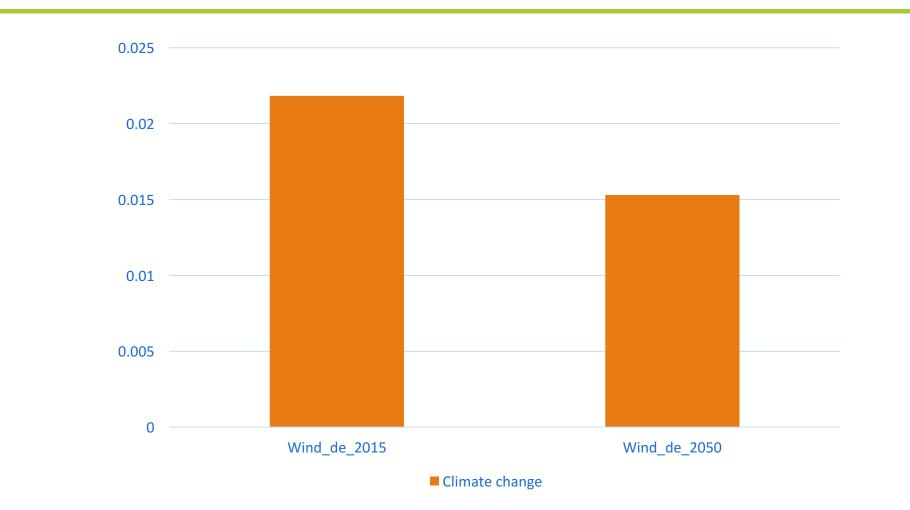

Life cycle inventories (Utopia)

Example: LCA model for wind onshore technology

KIT-ITAS

nstitut für

Technikfolgenabschätzung


2. Update reference LCIs, e.g. wind-onshore

	FCOINIVENT	2050	
	ECOINVENT	Conventional	Next generation
		80%	20%
Process's name	wind turbine construction, 2MW, onshore		
Life-time (year)	20	20	20
Capacity (MW)	2	32	32
	Main materials input		
Steel (kg/MW)	1.35E+04	2.40E+04	2.40E+04
Cast iron (kg/MW)	1.04E+04	1.80E+04	1.80E+04
Copper (kg/MW)	1.41E+03	5.00E+01	5.00E+01
Aluminum (kg/MW)	2.69E+02	7.27E+02	7.27E+02
Glass fiber reinforced plastic (kg/MW)	7.10E+03	7.54E+02	7.54E+02
Concrete (m ³ /MW)	1.75E+02	1.58E+02	1.58E+02
Carbon fiber (kg/MW)		5.00E+03	5.00E+03
			5.0E+01
Neodymium oxide (kg/MW)			

Comparative results e.g. climate change for wind power - onshore

Life cycle inventories (Utopia)

	Data	Data sources
	Overall basic data (reference LCI)	Eco invent Literature review
Foreground	Updating: Materials consumption for promising technologies, i.e. wind, solar	Literature review Company reports Assumptions
	Updating: Quantity of energy services Generation capacity and life time Fuel consumption Generation efficiencies, etc.	ESMs (Input)
	Overall basic data	Eco invent database
Background	Updating: Energy mix, e.g. electricity mix, heat mix. E-mobility data	ESMs (Output)
	Updating: Energy mix (rest of the studied geographical and technological scope) Technological improvement related to material production, infrastructure, etc.	Other ESMs Literature review Assumptions

1. Development of reference LCIs

Technologies	Sources
Wind onshore	Ecoinvent 3.3
Wind offshore	Ecoinvent 3.3
Photovoltaic	Ecoinvent 3.3
Concentrated solar plant	Literature
Biomass	Literature
Geothermal	Ecoinvent 3.3
Hydro power	Ecoinvent 3.3
Carbon capture and storage	Literature
Other conventional technologies	Ecoinvent 3.3

Thanks for your attention

Data gathering and modeling contacts:

- maryegli.fuss@kit.edu
 - lei.xu@kit.edu

