CASE STUDY: APPLICATION OF EXPERIENCE CURVES IN THE ASTRA TRANSPORT MODEL

Stephanie Heitel
Fraunhofer-Institute for Systems and Innovation Research (ISI)

REFLEX Expert Workshop
Karlsruhe, 8th November 2017

© Fraunhofer ISI
PRIMES REFERENCE SCENARIO EU28 FOR TRANSPORT

Efficiency increase included, but low shift to low-carbon technologies

Transport activity & final energy demand

Final Energy Demand by fuel

- Electricity
- Liquified hydrogen
- Methanol & ethanol
- Biogas
- Gas
- Biofuels (liquids)
- Oil (LPG, Gasoline, Diesel, Kerosene, others)

Passenger transport activity (Gpkm)
Freight transport activity (Gtkm)
Final Energy Demand (in Mtoe)
ASTRA - ASSESSMENT OF TRANSPORT STRATEGIES

ASTRA model: www.astra-model.eu

Main characteristics:

- System Dynamics
- Vensim® software
- 1995 to 2050 (dt = ¼ a)
- ~ 9,000 variables
- Modular structure
- EU28 + CH/NO
- Calibration of modules in sequence

3 Companies: TRT Trasporti e Territorio, M-FIVE, Fraunhofer ISI
Development of vehicle fleet by technology for a specific scenario

Comparison of different scenarios

Source: Michael Krail (2012), Project GHG-TransPoRD, ASTRA model
DIFFUSION OF TECHNOLOGIES

EXEMPLARY RESULTS: EMISSIONS, CAR PRICES

Development of emissions for different scenarios

Development of car prices by technology

Source: Michael Krail (2012), Project GHG-TransPoRD, ASTRA model
VEHICLE FLEET MODULE

SIMULATING FLEET DEVELOPMENT IN 4 SUB-MODULES

- New vehicles registered
- Choice of fuel technology
- Ageing of the vehicle stock
CHOICE OF FUEL TECHNOLOGY

SCHEME ON SIMULATING THE CHOICE IN ASTRA

Drivers of the choice:
- Investment costs
- Fuel / electricity prices
- Consumption per vkm
- Taxes, insurance, road charges, maintenance costs
- Filling/ Charging station infrastructure
- Range of vehicles

Discrete choice to estimate the behaviour:
- Cost for energy consumption
- Fuel procurement cost

Logit function

Technology share
PURCHASE PRICES BY TECHNOLOGY

SEVERAL FACTORS USED FOR CALCULATION

- Basic vehicle price * Price level adjustment by country
- Additional costs for alternative fuel cars by technology

Development of car prices reflecting the **trend** of more expensive safety, efficiency and convenience

Price increase to achieve the CO₂ emission limits affecting only fossil-based cars

Price decline for BEV and FCEV representing higher economies of scale induced by R&D derived from GHG-TransPoRD with an assumed learning rate in a one-factor learning curve of 10%. Underlying diffusion scenario with a share of 65% on total fleet until 2050.
EXPERIENCE CURVES FOR CAR PRICES
IMPLEMENTED IN SD BY INFLOWS IN STOCK

Source: Michael Krail (2012), Project GHG-TransPoRD, ASTRA model
COMPONENT-BASED APPROACH

SUMMATION TO CAR PRICE BY TECHNOLOGY

Technology-dependent

- with learning
 - Price for major technology-dependent components
 - for Electric Vehicles (Power electronics, Transmission,...)
 - Price for further parts related to a technology
 - for Internal Combustion Engines (exhaust system,...)

- without further learning

Technology-independent

- Base price for all parts that are independent of the technology (Chassis, seats, etc.)
COMPONENT-BASED APPROACH
LEARNING CURVES FOR SINGLE COMPONENTS

Main technology-dependent components to be considered for learning curves:

- **Battery (kWh)**, Battery management system, Electric motor (kW)

- **Fuel Cell stack (kWh)** incl. BOP (balance of plant), Hydrogen tank (kWh)
EXPERIENCE CURVES FOR CAR PRICES
COMBINING ENDOGENOUS & EXOGENOUS DATA

Endogenous in ASTRA for EU 28 + CH/NO

Exogenous for Rest of World via Model 'TE3'

Cost of first unit
Learning rate
Experience curve function
Car purchase price

New vehicle purchases in EU + CH/NO per time-step (¼ year)
Accumulated sales as stock

Model TE3 (KIT-IIP): Sales for USA, China, India, Japan
Factor for Rest of World based on ASEAN Automotive Federation Statistics on production

Cumulative sales (production)

exchange of sales numbers until prices are stable
Issues for Implementation

Diverse Aspects at Some Point in Question

| Learning across fleet types and need for exogenous data for RoW for trucks, light duty vehicles and busses |
| Spillover effects from stationary storage on battery prices |
| Technology change, e.g. new battery types |
| Time-step ¼ year – combination with 1 year for RoW |
| Component-based instead of vehicle-based |
| Proceeding in case of lack of data for components: Option to deviate learning curve parameters, e.g. by grouping parts with similar learning types? |
| Transfer from learning to prices – adaptations required: e.g. OEMs sell alternative fuel cars for first 5 years without margin, after 5 years smoothly to margins above the Learning Curve line |

Scaling effects on prices for larger batteries
FURTHER TECHNOLOGICAL LEARNING IMPACT IN ASTRA FOR FLEET & ENVIRONMENT

- Capacity / range of vehicles
- Weight of batteries
- Bio-fuels
- PtX-fuels
- Consumption / energy efficiency
- Emissions
CASE STUDY:
APPLICATION OF EXPERIENCE CURVES IN THE ASTRA TRANSPORT MODEL

Stephanie Heitel
Fraunhofer-Institute for Systems and Innovation Research (ISI)
Breslauer Straße 48 | 76139 Karlsruhe | Germany
Phone: +49 721 6809-340
Email: stephanie.heitel@isi.fraunhofer.de

REFLEX Expert Workshop
Karlsruhe, 8th November 2017