CASE STUDY: APPLICATION OF EXPERIENCE CURVES IN THE ASTRA TRANSPORT MODEL

Stephanie Heitel Fraunhofer-Institute for Systems and Innovation Research (ISI)

REFLEX Expert Workshop Karlsruhe, 8th November 2017

PRIMES REFERENCE SCENARIO EU28 FOR TRANSPORT

Efficiency increase included, but low shift to low-carbon technologies

Final Energy Demand by fuel

- Electricity
- Liquified hydrogen
- Methanol & ethanol
- Biogas
- Gas
- Biofuels (liquids)
- Oil (LPG, Gasoline, Diesel, Kerosene, others)

ASTRA - ASSESSMENT OF TRANSPORT STRATEGIES

ASTRA model: www.astra-model.eu

Main characteristics:

- System Dynamics
- Vensim® software
- 1995 to 2050 (dt = ¼ a)
- 9,000 variables
- Modular structure
- EU28 + CH/NO
- Calibration of modules in sequence
- 3 Companies: TRT Trasporti e Territorio, M-FIVE, Fraunhofer ISI

DIFFUSION OF TECHNOLOGIES FLEET COMPOSITION BY SCENARIO

Development of vehicle fleet by technology for a specific scenario

Comparison of different scenarios

Cars per Fuel Category in EU27 in EV+HFC

Share of Fuel Technologies in EU27 Car Fleet in 2050

Source: Michael Krail (2012), Project GHG-TransPoRD, ASTRA model

DIFFUSION OF TECHNOLOGIES

EXEMPLARY RESULTS: EMISSIONS, CAR PRICES

Development of emissions for different scenarios

Development of car prices by technology

Source: Michael Krail (2012), Project GHG-TransPoRD, ASTRA model

VEHICLE FLEET MODULE

SIMULATING FLEET DEVELOPMENT IN 4 SUB-MODULES

CHOICE OF FUEL TECHNOLOGY

SCHEME ON SIMULATING THE CHOICE IN ASTRA

PURCHASE PRICES BY TECHNOLOGY SEVERAL FACTORS USED FOR CALCULATION

- Basic vehicle price * Price level adjustment by country
- Additional costs for alternative fuel cars by technology

Development of car prices reflecting the **trend** of **more expensive** safety, efficiency and convenience

Price increase to achieve the **CO**₂ **emission limits** affecting only fossil-based cars

Price decline for BEV and FCEV representing higher economies of scale induced by R&D derived from GHG-TransPoRD with an assumed learning rate in a one-factor learning curve of 10%. Underlying diffusion scenario with a share of 65% on total fleet until 2050.

EXPERIENCE CURVES FOR CAR PRICES IMPLEMENTED IN SD BY INFLOWS IN STOCK

Source: Michael Krail (2012), Project GHG-TransPoRD, ASTRA model

COMPONENT-BASED APPROACH SUMMATION TO CAR PRICE BY TECHNOLOGY

COMPONENT-BASED APPROACH LEARNING CURVES FOR SINGLE COMPONENTS

Main technology-dependent components to be considered for learning curves:

- **Battery (kWh)**, Battery management system, Electric motor (kW)
- Fuel Cell stack (kWh) incl. BOP (balance of plant), Hydrogen tank (kWh)

EXPERIENCE CURVES FOR CAR PRICES COMBINING ENDOGENOUS & EXOGENOUS DATA

ISSUES FOR IMPLEMENTATION DIVERSE ASPECTS AT SOME POINT IN QUESTION

Learning across fleet types and need for exogenous data for RoW for trucks, light duty vehicles and busses

Component-based instead of vehiclebased

Scaling effects on prices for larger batteries

Spillover effects from stationary storage on **battery** prices

Technology change, e.g. new battery types

Proceeding in case of lack of data for components: Option to deviate learning curve parameters, e.g. by grouping parts with similar learning types?

Time-step ¼ year – combination with 1 year for RoW

Transfer from learning to prices – adaptations required: e.g. OEMs sell alternative fuel cars for first 5 years without margin, after 5 years smoothly to margins above the Learning Curve line

FURTHER TECHNOLOGICAL LEARNING IMPACT IN ASTRA FOR FLEET & ENVIRONMENT

CASE STUDY: APPLICATION OF EXPERIENCE CURVES IN THE ASTRA TRANSPORT MODEL

Stephanie Heitel Fraunhofer-Institute for Systems and Innovation Research (ISI) Breslauer Straße 48 | 76139 Karlsruhe | Germany Phone: +49 721 6809-340 Email: stephanie.heitel@isi.fraunhofer.de

REFLEX Expert Workshop Karlsruhe, 8th November 2017

