

Expert Workshop on Technological Learning in the Energy Sector

Learning curves for selected demand side technologies

Karlsruhe, 7th of Nov. 2017

Ulrich Reiter, Martin Jakob TEP Energy GmbH, Zurich

TECHNOLOGY ECONOMICS POLICY - RESEARCH AND ADVICE

Presentation overview

- Short introduction and overview of project
- Methodology for data collection
- Results
- Conclusions and model implications

Short introduction and overview of project

- REFLEX is investigating flexibility options and technological progress to comply with higher shares of fluctuating electricity generation
- On the demand side various technologies are implemented in bottom-up simulation model to calculate future demand
 - What is the impact of cost assumptions on demand development
 -> learning curves shall help to improve understanding

Experience curves: C = f (Q)=aQ^{-b} methodological progress needed

More explanatory power of innovation process and drivers of costs and deployment needed

Estimation Method

C (or Price) = f (Q(d₁, d₂, d₃....), M, P, L, B, E)

d1, d2, d3... drivers of deployment, e.g. M, P, Price (Cost)

- M market structures and situation [prices of input factors]P Policy action
 - . Quality of product, new standards
- B Business cycle

F

External conditions (weather, climate)

=> Understanding techno-economic progress, diffusion process, barriers and successful policy measures as important as knowing the exact progress ratio

CASE 1

Economics of renewables

(new single-family houses)

Source: CEPE, ETH Zurich, WWF (2008)

How did we come here: Heat pumps success factors

- Research and development of motivated actors from the 1970s
- Association for the promotion of heat pumps (1993) manufacturers installers, electricity industry, authorities
- Quality assurance (education, COP, noise reduction) test-center (since 1993) and field tests (since 1994)
- Strong and coherent advertising
- Economic incentives from electricity sector (special tariffs)
- Incentives from building codes in some cantons ("20%-rule")
- Incentives also through Minergie-label (weighting of energy)
- D-A-CH quality seal (Germany, Austria, Switzerland): 2001
- Good word-of-mouth propaganda of home owners

Heat pumps: success indicators

- Increasing number of sales and market share (mainly new SFH, since 2004 also existing ones)
- Strongly decreasing investments costs, increasing COP
- => Significant techno-economic progress

he promotion of heat pumps

Heat pump: next steps

Heat pumps

- Two approaches to update data series
 - Microeconomic analysis considering project specific data (country specific)
 - Including local learning
 - To be conducted
- Publicly available data
 - Unit unspecific (COP/size)
 - LR approx. 14% for Germany only
 - Productivity thresholds for 10'000 units and 100'000 units sold per company. No company in Europe producing more than 100'000 units per year

Heat pumps:

Gather original data from Swiss planners

- Break-down on cost categories: borehole heat exchanger, HP machine, installation, planning, geological expertise
- Context variables:
 - Base year (year of planning or of construction)
 - Cost typ: final cost / quote
 - Building typ (SFH, MFH, other)
 - RFA (m2)
 - Installed power
 - Case: New built / existing building (Outlet-Temperature)
 - HP-Typ (accoriding HP test centre)
 - Length and number of borehole heat exchangers
 - Geological conditions
 - System attributes: bivalent/ monovalent; Hot water yes / no ; Solar yes / no
 - Type of installer
 - Location
 - Type of owner, investor or builder (private, public, general builder etc.)

Eurostat production units

Long-term technical progress of envelope insulation in Switzerland

Drivers of past cycle:

- Energy crises and price increases/high levels (or expectations) 1973, 1979-1986, 2004 - and concern on energy / environment
- Standards set by professional association SIA building elements: 70ies; whole building 1988 / 2001 / 2007
- Codes by cantonal authorities: mainly 1980ies, harmonization 1990ies, reinforcements 2001, 2008 and planned for 2018/2020
- (Autonomous) technical progress (competition)
- Voluntary Standards and Labels (MINERGIE as from 1997)

Long-term technical progress of envelope insulation in Switzerland

- Continuous increase of insulation thickness (cf. table)
- Easier to install (e.g. due to glues)
- Development of insulated elements (window sill / breast / reveal)
- Reduction of thermal bridges (e.g. fixings)
- More recently: lower λ (thermal conductibility): compound materials: ≤ 0.03 W/mK, vacuum insulation: < 0.01 W/mK

1990 1993 1995 1997 2000 2003 2007 1961-1966-1971-< Incl. roof 60-80 Façade 60-80 80-100 Flat roof Bas. ceiling Source: Flumroc/CEPE ETH Zurich, TEP Energy

Example: Rock wool insulation in Switzerland

Progress ratio of standard

compound façade insulation (PS)

Development since 2001:

• Updates (2008) confirm results of Jakob and Madlener (2004)

Further Cases

Technology addressed

Air conditioning

- Data based on European customs statistics and global air conditioning association data
- 2014 new CEN standards
- Sales influenced by annual heat conditions
- Units not specified
- Short timeline

Air conditioning

Technology addressed

Solar thermal

- Data based on European solar association
- Inflation corrected (base 2010)
- 2013 new CEN standards
- (no) learning in terms of cost reduction

Solar thermal results

Solar thermal

Data for France

- Based on Observ'ER data
- Small market volumes (40% of German market)
- Qualification activities for installers by associations
- Declining market from 2012 onwards
- Differences in units of costs to be investigated
- Learning rate estimate at approx. 6%

Solar thermal France

TEP Energy GmbH, Zurich, Date

Conclusions and model implications

- Demand technologies seem to be strongly influenced by:
 - Price effects from market conditions (buyers or sellers' market)
 - Influence from changing standards
 - Local learning of relevance (installation costs, local manufacturing)
 - Construction cost indices only partially applicable
- More explanatory power of innovation process and drivers of costs and deployment needed

– Only for demand technologies???

Thank you for your attention

Questions?

Dr. Martin Jakob and Dr. Ulrich Reiter TEP Energy Rotbuchstr. 68, 8037 Zürich <u>martin.jakob@tep-energy.ch</u> ulrich.reiter@tep-energy.ch

+41 43 500 71 71 (office) +41 79 691 16 28 (cell, Martin Jakob) +41 79 876 59 69 (cell, Ulrich Reiter)

Dead lock vs. break through

Time

Case 1 Heat pumps in (new) single-family houses

Case 2 Window glazing

Techno-economic progress of window glazing (Switzerland)

- Significant decrease of thermal transmittance (U-Value) since
 1950s
- Price decrease of low-e double glazing from 110 to <70 Euro/m²: -35% between 1984 and 1997

Cost/price development of

glazing and windows

Cost/price development of glazing and windows

Price deflator CHF/m² Triple, coated 300 1.2 1.0 Double, coated 200 0.8 0.6 Triple, non-coated 100 0.4 **₽-0-0** Double, 0.2 non-coated 0 0.0 1980 2000 2010 1970 1990 Price increase Decreasing U-Value&Price Source: =>Learning & Experience Still learning? Leading Swiss glazing company, BFS, CEPE ETH Zürich

Diffusion of coated double glazing

Ambitious codes => rapid diffusion and market transformation

Diffusion of coated double glazing

Ambitious codes => rapid diffusion and market transformation

Development 2001-2007:

- Non-coated glazing fading out
- Diffusion of triple glazing increasing steadily (despite price increase), but only slowly

Development >2007:

Diffusion of triple glazing more rapid

CEPE, ETH Zurich

Source:

- Double insulation og lateingsulation og lazing ated grazble, coated glazing

- Triple insulation Toilatein of sulation Triplazing ated glazing

Market share (%) Market share (%)

Case 3 Building envelope insulation

Add-on Prices of Facade Insulation

as compared to reference 12 cm (CHF/m²)

New market

- Pioneer market pricing
- Pricing learning costs
- Security surcharge
- Benchmark?

Conclusion of cases

Window glazing and building envelope

- Codes and standards enable market transformation
- Diffusion from new buildings to existing ones
- EE ok, low retrofit rates still a problem

References

- Banfi, S., Farsi, M., Filippini, M., Jakob, M. (2008). Willingness to Pay for Energy-Saving Measures in Residential Buildings. Energy Economics 30 (2006) 503–516.
- de T'Serclaes Ph., Moarif S., Koizumi S., Jakob M., Aubourg, M., Barnsley, I., Eichhammer W., Honegger-Ott A., Reichert J. (2008). Promoting Energy Efficiency Investments -- Case Studies in the Residential Sector, IEA/AFD (Ed.), 324 pages, ISBN 978-92-64-04214-8.
- Jakob M. (2007). Essays in Economics of Energy Efficiency in Residential Buildings An Empirical Analysis. Diss ETH No 17157, Zurich.
- Jakob (2006): Marginal costs and co-benefits of energy efficiency investments The case of the Swiss residential sector. Energy Policy 34, 172–187.
- Jakob M., Madlener R. (2004), Riding Down the Experience Curve for Energy-Efficient Building Envelopes: The Swiss Case for 1970-2020, International Journal of Energy Technology and Policy (Special Issue on Experience Curves), 2(1-2): 153-178.
- Jochem E. et al. (2002): Steps to-wards a 2000 Watt–Society: Developing a White Paper on Research & Development of Energy-Efficient Technologies, Prestudy, Final Report, available from www.cepe.ethz.ch
- Neij L. Kiss B., Jakob M. (2008): Market transformation for energy efficiency a case study of the introduction and diffusion of heat pumps in Sweden and Switzerland. Presented at the DIME Conference on "Innovation, Sustainability and Policy", Bordeaux (11-13 September 2008)
- Ott, W., Jakob, M., Kaufmann, Y., Baur, M. (2005): Mobilisierung der energetischen Erneuerungspotenziale im Wohnbaubestand (Mobilising the energy efficiency potentials in the Swiss residential sector), econcept/CEPE on behalf of Swiss Federal Office of Energy (EWG) and Swiss Federal Office of Housing, Bern, November
- Sorrell, O'Malley, Schleich, Scott (2004): The economics of Energy Efficiency Barriers to Cost-Effective Investment. Edward Elgar Publishing

Technology addressed

Building automation

Data based on European and US data from "Berg insights"

Data issues

- Very short timeline
- Mix of point solutions and multi-functions included

Thank you for your attention!

Questions?

Dr. Martin Jakob TEP Energy Rotbuchstr. 68, 8037 Zürich martin.jakob @ tep-energy.ch

+41 43 500 71 71 (office) +41 79 691 16 28 (cell)