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Last week’s news

Atmospheric CO2 concentration is rising at 
record levels
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The Guardian (30 October 2017)

Zeit Online (30 October 2017)

Reuters (30 October 2017)



Atmospheric CO2 concentration

CO2 levels must stay below 500 ppm to limit 
temperature rise to 1.1-2.6 ˚C
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+1.1 - 2.6 ˚C

Source: WMO Greenhouse Gas Bulletin No. 13. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2016. World Meteorological Organisation. 
(30 October 2017)



Decarbonisation of electricity generation

For that to happen, global electricity 
generation must be carbon-free by 2050

4Source: IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. 



Electricity storage could play a critical role in 
low-carbon energy systems
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Source: Icons made by Freepik from www.flaticon.com



But, the future role of electricity storage is still 
perceived as highly uncertain
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Uncertainty on role of storage

Source: World Energy Issues Monitor 2017 | Exposing the new energy realities. World Energy Council; 2017.



Recent cost developments

Although costs for lithium-ion batteries have 
fallen dramatically in recent years

7Sources: Tepper, M. Solarstromspeicher-Preismonitor Deutschland 2016. (Bundesverband Solarwirtschaft e.V. und Intersolar Europe, 2016); 
www.solarfixni.co.uk/solarpanelsystems/tesla/; www.tesla.com/powerwall

October 2013 April 2015 October 2016

Average: 3,000 $/kWh

Powerwall 1: 1,100 $/kWh

Powerwall 2: 500 $/kWh



Approach

A consistent method to project cost for 
multiple technologies is needed
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Technology
• Cost analyses are focussed on lithium-ion 
• A holistic assessment should cover multiple technologies

Scope
• Cost quotes refer to different technology components
• A transparent analysis should clarify reference scope

Method
• Cost projections are made with varying methods
• An objective and consistent method should be chosen

Source: www.flaticon.com



Dataset

We derive a 1st-of-its-kind experience curve 
dataset for storage technologies...

9Source: O. Schmidt, A. Hawkes, A. Gambhir & I. Staffell. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017)
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Result

... that enables evidence-based cost projections
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Sanity Check – Raw material cost

Raw material costs suggest that these cost 
projections are not infeasible
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Sanity Check – Investment requirement

Required investments in deployment to 
achieve projected costs appear sensible
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However, experience rates of immature 
technologies can be highly uncertain
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Uncertainty Check

Source: Junginger M, van Sark W, Faaij A. Technological learning in the energy sector: Lessons for policy, industry and science. Cheltenham: Edward Elgar Publishing; 2010.
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However, experience rates of immature 
technologies can be highly uncertain
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Uncertainty Check

Source: O. Schmidt, A. Hawkes, A. Gambhir & I. Staffell. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017)



However, experience rates of immature 
technologies can be highly uncertain
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Uncertainty Check
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However, experience rates of immature 
technologies can be highly uncertain
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Uncertainty Check
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“Notably, the two-factor model explains the 
recent plunge of battery prices better than 
both conventional models using economies of 
scale or a classic experience curve approach.”



Analysis 1 – Capital cost projection

The cost of installed utility-scale lithium-ion 
systems fall to 290-740 $/kWh by 2030
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Analysis 2 – Investment comparison

Instead of a nuclear plant, the UK could have 
doubled its existing storage capacity

18

Cost: US$24 billion
Completion: 2025

OR

3.2 GW baseload capacity
“Meet 5-10% of UK demand”

35 GWh storage capacity
“Double UK’s storage capacity”

Source: Own Analysis



Analysis 3 – Competitiveness (Home storage)

The market for home storage appears poised 
for growth...

19Source: www.tesla.com/powerwall; L. Goldie-Scot, Global Energy Storage Forecast 2016-24, Bloomberg New Energy Finance, 2016.
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Analysis 3 – Competitiveness (Home storage)

with cost of installed residential li-ion systems 
falling to 300-780 $/kWh by 2030
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780$/kWh

300$/kWh

520$/kWh

Source: Own Analysis
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Analysis 3 – Competitiveness (Home storage)

Still, residential batteries are unlikely to make 
economic sense in GER before 2030
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Timespan

Source: Own Analysis
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Analysis 4 – Power system models (Approach)

Including storage cost forecasts in power 
system models informs on abatement cost

22

Experience Curves Power System Model (UK)

Future cost for three storage technologies: 1. Baseline scenario 

2. Storage scenario

3. Marginal abatement cost

P2G Flow Li-ion
Duration 20h 6h 3h
Efficiency 30% 75% 85%
Lifetime 15y 15y 15y



Analysis 4 – Power system models (Impact of storage)

We model storage in the power system where it 
reduces CO2 emissions at a cost
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Analysis 4 – Power system models (MACC for storage)

... the marginal abatement cost of storage

24

~300

Source: Own analysis

PtG Redox Li-ion
Duration 20h 6h 3h
Efficiency 30% 75% 85%
Lifetime 15y 15y 15y



Oliver	Schmidt	|	PhD	Researcher	in	Energy	Storage
Grantham	Institute	- Climate	Change	and	the	Environment
Imperial	College	London,	Exhibition	Road,	London	SW7	2AZ
Tel:	+44	(0)	7934548736
Email:	o.schmidt15@imperial.ac.uk
Website:	www.storage-lab.com

Questions?



Home storage

Analysis 3 – Competitiveness 

This has implications on the profitability of 
storage in various business cases

26

Electric vehicles



Analysis 3 – Competitiveness (Electric Vehicles)

The electrification of transport attracts most 
attention, because ...

27Source: https://www.thestar.com/business/2016/04/01/teslas-model-3-could-be-the-car-that-makes-electrics-mainstream.html; https://www.evoto.ca

Tesla’s	Model	3	
could	be	the	car	
that	makes	electrics	
mainstream

60,000	GWh
(annual	demand	for	EV	batteries	if	
1.2bn	passenger	cars	are	electric)
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Analysis 3 – Competitiveness (Electric Vehicles)

... electric cars will beat conventional ones 
between 2022 and 2034

28

Timespan

Source:	O.	Schmidt,	A.	Hawkes,	A.	Gambhir	&	I.	Staffell.	The	future	cost	of	electrical	energy	storage	based	on	experience	rates.	Nat.	Energy	2,	17110	(2017)



Analysis 3 – Profitability (Frequency control)

Recent investments in storage to provide 
balancing services show that...

29Source:	https://www.energy-storage.news/news/siemens-to-deploy-market-based-grid-balancing-battery-for-german-utility
P.	Stenzel,	Bereitstellung	von	Primärregelleistung	durch	stationäre	Großbatteriespeicher,	Forschungszentrum	Jülich,	Institut	für	Energie- und	Klimaforschung	–
Systemforschung	und	Technologische	Entwicklung	(IEK-STE),	2016.
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Analysis 3 – Profitability (Frequency control)

... primary frequency response is a business 
case for storage
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Analysis 3 – Profitability (Wind farm)

Using batteries to optimise renewable power 
output for profit...

31

Vattenfall plans	
22MW	battery	
storage	facility	at	
South	Wales	wind	
farm

Source:	https://theenergyst.com/vattenfall-plans-22mw-battery-storage-facility-at-south-wales-wind-farm/
Own	analysis
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Analysis 3 – Profitability (Wind farm)

... is only viable when the variability of power 
prices increases by a factor of 7.5

32

Wind farm: 219 MW
Battery: 95 MW / 330 MWh

StDvprice: x7.5 
Δprice: 1000 $/MWh

StDvprice: x3.3 
Δprice: 500 $/MWh

Δprice: 150 $/MWh

Timespan

Source:	www.renewables.ninja
Own	analysis



Analysis 4 – Profitability (Wind farm)

Wind farm output from Renewables.Ninja

33Source:	https://theenergyst.com/vattenfall-plans-22mw-battery-storage-facility-at-south-wales-wind-farm/



Analysis 4 – Profitability (Wind farm)

Annual profit for battery of different sizes 
coupled to 219MW wind farm
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Problem

... affecting insights gained from energy system 
models

35

Source:	www.tesla.com/blog/battery-cell-production-begins-gigafactory
www.youtube.com/watch?v=4F9ON-8rSnM

“Our	results	show	that	[...]	CO2
emissions	[...]	can	be	reduced	by	up	to	
80%	[...],	without	electrical	storage.”	

Source:	MacDonald	AE,	Clack	CTM,	Alexander	A,	Dunbar	A,	Wilczak J,	Xie Y.	Future	cost-
competitive	electricity	systems	and	their	impact	on	US	CO2	emissions.	Nat	Clim Chang.	
2016:4–7.	

“Production	of	Powerwall 2	
started	on	January	4th 2017.”

vs.



Atmospheric CO2 growth

from <0.2 (ice age end) to 0.7 (mid 20th) to 2.0 
ppm/yr (2006-16)

36Source: WMO Greenhouse Gas Bulletin No. 13. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2016. World Meteorological    
Organisation. (30 October 2017)



Electricity storage & Renewables

In the UK, electricity storage is projected to be 
5%-20% of Renewable capacity
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Technologies

Electricity can be stored in multiple ways

38

Electricity 
Storage

Technologies

Mechanical

• Pumped hydro (PHS)
• Compressed air (CAES)
• Flywheel
• Gravitation

Electrolysis  

Liquid air

Pumped hydro

Supercapacitor

Lithium-ion

Redox-Flow



Technology Scope

Cost figures often refer to different technology 
scopes
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Source: O. Schmidt, A. Hawkes, A. Gambhir & I. Staffell. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017)
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Experience curves are an objective tool to 
model cost reductions for technologies
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Solar PV (23%, Module)

Source: Liebreich, M. Keynote - Bloomberg New Energy Finance Summit 2016. (Bloomberg New Energy Finance, 2016). 



The identified experience rates are within the 
range of other energy technologies

41

Sanity Check – Energy technologies

Source: Adapted from Staffell I, Green R. The cost of domestic fuel cell micro-CHP systems. Int J Hydrogen Energy 2013;38:1088–102. doi:10.1016/j.ijhydene.2012.10.090.
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