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1 Introduction 

Within the REFLEX project, a large effort is ongoing to model the transitioning layout of the 

European energy system. A set of energy models, representing all sectors of the energy 

system, are coupled to analyse especially how technologies that offer energy flexibility can 

play a role in the future energy system. A large part of this modelling activity is determining 

which technologies will see increased diffusion, and which technologies will be phased out. A 

key consideration here is how the future costs of both incumbent and upcoming technologies 

will develop in the future.  

Technology costs can decrease through a variety of mechanisms, mainly learning-by-doing, 

learning-by-researching (R&D), product upscaling (larger products) and production upscaling 

(larger production facilities). Through a variety of methods, production cost decreases resulting 

from these mechanisms can be established. Experience curves, although not without 

drawbacks, are one of few methods that use empirical data to derive a mathematical function 

that relates cost decreases of a technology to cumulated production experience. Using 

experience curves, one can estimate the future costs of a technology, given some exogenously 

derived development of cumulative production.  

Since the modelling activities within REFLEX require accurate cost estimations of different 

technologies in the future energy system, a part of the REFLEX project focused on gathering 

empirical data to make these future cost estimations using experience curves that were derived 

from this empirical data. Aside from the application within the REFLEX project, the results of 

this exercise are themselves valuable for researchers, policy makers and other stakeholders, 

since accurate cost trends and outlooks for energy technologies are valuable information in 

the context of the ongoing transition towards a sustainable energy system.  

Experience curves are based on the concept in economics that the production costs of a 

technology (or other parameters relating to the economic performance) improve significantly 

as producers gain experience with production of this technology.  

The experience curve in the form discussed here was developed by the Boston Consulting 

Group (BCG, 1968), as an evolution of previously known learning effects in manufacturing 

(Junginger et al., 2010). BCG presented the experience curve as a means to describe the 

reduction of total product cost as a function of cumulative production of this product: 

𝐶(𝑐𝑢𝑚) = 𝐶1 ⋅ 𝑐𝑢𝑚
𝑏 (1) 

Where 𝐶(𝑐𝑢𝑚) is the cost 𝐶 of the product at cumulative production 𝑐𝑢𝑚, 𝐶1 is the cost of the 

first unit produced, and 𝑏 is the experience parameter. The experience curve is normally plotted 

on a double-logarithmic scale, and can also be expressed as a linear equation by expressing 

it in a logarithmic form: 

log 𝐶(𝑐𝑢𝑚) = log𝐶1 + 𝑏 ⋅ log 𝑐𝑢𝑚 (2) 

 

 

The experience curve parameter 𝑏 thus represents the slope of the linear representation of the 

experience curve in a double-logarithmic graph. Since the slope of this line indicates the rate 
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at which a technology’s cost decreases, two terms have been connected to the experience 

parameter 𝑏: the progress ratio (PR) and the learning rate (LR): 

𝑃𝑅 = 2𝑏 (3) 

𝐿𝑅 = 1 − 2𝑏 (4) 

At a learning rate of 20% (PR of 80%), the cost of a product decreases with 20% for every 

doubling of cumulative production 𝒄𝒖𝒎. Hence these parameters are a more meaningful 

expression of the experience parameter 𝑏.  

An example of an experience curve, for solar photovoltaic (PV) modules, is given in Figure 1. 

Shown in this figure is the raw, empirical data collected, the derived experience curve, and an 

example of plotting this data on normal, linear scales and on double-logarithmic or log-log 

scales. For this dataset, a learning rate of 23.9% was derived, indicating a decline in price of 

23.9% for every doubling of cumulative production of PV modules.  

 

Figure 1: Example of experience curves on two different graph scales: normal, linear scales (left) and 
double logarithmic or log-log scales (right). Data from Fraunhofer ISE (2016), Fraunhofer ISE (2017), 
Fraunhofer ISE (2018). 
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2 Overview and technology highlights 

2.1 Overview 

In Table 1 below, an overview is given of the learning rates found for the technologies 

investigated within the REFLEX projects. A number of general observations are made: 

With the exception of onshore wind and electricity with CCS, the value of learning rates ranges 

from about 10% to 21%. Errors in the learning rate range from very low (0.8% for PV modules) 

to very high (6.1% for utility redox-flow storage). This has direct implications for their application 

for extrapolation and use in models for future deployment, as will be discussed in the next 

section.  

Furthermore, we note that earlier studies found a normal distribution of average learning rates 

for manufacturing technologies of about 20% (Argote and Epple, 1990) and more specifically 

for both energy supply and demand technologies of around 16% (Junginger et al. 2010; 

chapter 19). The learning rates presented in Table 1 below show an average of 15% (the 

learning rates of 24.5 and 25.8% for onshore wind were excluded from this average1).  

Thus, it appears as if the majority of experience curves and learning rates identified are in line 

with earlier findings. Nevertheless, there are several issues and limitations with the (set of) 

experience curve(s) for each technology, which are discussed in the following section.  

                                                

1 The high values of 24.5% / 25.8% for onshore wind were excluded from this overview, as these learning 
rates are not considered to be representative. 

Table 1: Overview of learning rates and their errors. At a learning rate of 20%, the cost of a product 
decreases with 20% for every doubling of cumulative production. 

Technology Learning 
rate 

Error Cumulative data 
unit 

Functional 
unit 

Remarks 

Solar PV: modules 21.4% 0.8% MW installed Wp  

Solar PV: BOS 12.9% 1.7% MW installed Wp  

Solar PV: systems 18.6% 1.0% MW installed Wp  

Power-to-H2 (alk. electrolysis) 17.7% 5.3% GW installed kW  

Heat pumps 10%  Units sold kW Estimate 

Gas + CCS 2.2%  MW installed kW From Rubin et al, 2007 

NGCC + CCS 2.2%  MW installed kW From Rubin et al, 2007 

Coal + CCS 2.1%  MW installed kW From Rubin et al, 2007 

Industrial CCS 
11%  
12% 

 Na. Na. 
From Rubin et al, 2007 proxy 
for capture only 

Residential li-ion storage 12.5% 3.0% GWh sold kWh  

Utility li-ion storage 15.2% 3.7% GWh installed kWh  

Utility redox-flow storage 14.3% 6.1% GWh installed kWh  

BEV battery packs 15.2% 2.9% GWh sold kWh  

FCEV fuel cell stacks 18.0% 1.7% GWh sold kWh  

HEV battery packs 10.8% 0.6% GWh sold kWh  

Wind – offshore system 10.3% 3.3% GW installed MW  

Wind – onshore system 5.9% 1.3% GW installed MW 1982-2016 data 

PEFC micro-CHP 19.3% 1.6% Units sold kW  

Source: REFLEX project 



 Policy Brief  

8 

2.2 Technology highlights, comparison and discussion 

The experience curves shown in the previous section are the basis for the implementation of 

technological learning and cost reductions with cumulative deployment in a number of the 

energy models included in the REFLEX project. However, implementation if these models 

should be done with care, as each technology and experience curve have specific peculiarities 

and points of attention. Below, we first discuss the overview of experiences curves found, and 

the briefly zoom in on the individual technologies.  

A first point observation is that all experience curves show production (or price) decline; not a 

single technology was identified with constant or increasing costs -at least not over several 

cumulative doublings of deployment.  In some cases, especially onshore and offshore wind, 

prices have remained stable or even increased of a number of years, but this can (almost 

always) be attributed to market effects and does not imply that actual production cost did not 

decline. Nevertheless, it is also a reminder that experience curves can only be used to project 

production costs of technologies, but these do not (necessarily) reflect market prices (which 

also depend on demand, subsidies, competition with other technologies, and other exogenous 

factors). As such, their use in optimisation models (where typically all technologies are 

assumed to be available at lowest possible costs) makes more sense than in simulation 

models. 

The highest rates observed are for PV modules, which also show the lowest error term2 and 

thus can be extrapolated with fairly high confidence. On the other hand, the error in e.g. the 

experience curve slope for utility redox-flow storage is significant, and extrapolation over 2-3 

cumulative doublings would already result in a large range of possible costs. These aspects 

will need to be taken into account when evaluating the model results. 

Second, for all technologies, one or several issues were identified (as shown at the end of 

each technology chapter). For several issues, it was possible to apply a standard solution, but 

in many cases, one or several points remained that need to be considered when interpreting 

these curves and using them in energy models. These are also briefly discussed below for 

each (set of) technologies.  

When looking at individual technologies, PV modules have been the prime example of 

demonstration the experience curve principle – within the energy sector, they are undisputedly 

the technology following most closely and consistently an experience curve (Figure 2). Even 

despite minor price fluctuations due to market effects, the curve is declining steadily at a 

learning rate of 21.4±0.8% over 3.5 decades and about 16 doublings of cumulative production 

– a truly impressive accomplishment, with no signs of slowing down. It has however become 

apparent that the balance-of system costs need to be modelled separately, as these learn with 

a different learning rate (about 13%). The balance-of-system or BOS costs represent all costs 

aside from the modules, like the inverter and mounting structure, but also installation costs 

(labour) and other costs.  

                                                

2 The error term indicates the uncertainty margin of the established learning rate, and is a result of 
variations of the collected data from the fitted experience curve model.  
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Figure 2: Experience for PV systems, Modules and Balance-of-system components. Data sources: 
Fraunhofer ISE (2016), Fraunhofer ISE (2018), Van Sark (2008), IEA PVPS (2017). 

On the other hand, there are several peculiarities for the second technology that is expected 

to provide a major share of renewable electricity: onshore (and offshore) wind energy. 

Studies analysing price trends over the period 1980-2000 already found varying estimates for 

learning between about 10-18%, depending amongst others on the chosen system boundaries 

(Neij et al. 2003). However, steep price increases were observed between 2002-2009, only to 

be followed by strong decreases again between 2009-2016. The 25.8 / 24.5% values for two 

separate datasets for onshore wind shown for the 2009-2016 period are excluded from the 

range cited above, as this trend is only established over a rather short period of time, in which 

few doublings of cumulative capacity occurred. Also, this decline had in 2016 not reached 2002 

levels. This means that the average capacity costs in 2016 were still higher than those of 2002. 

No clear reasons were found for why price levels had not returned to the level found 14 years 

earlier.  Due to this anomaly between 2002-2016, the long-term experience curve from 1981-

2016 shows a learning rate of only 5.9%, which is much lower than previous estimates. While 

this value is deemed most reliable for the time being, it is possible that actual production costs 

are still (far lower) than current prices, and that prices could decline much below the 2002 

levels in the future. This is also supported by recently reported record-lows for costs of 

electricity from onshore (and offshore) wind farms (Pfeifer, 2018). Thus, models using learning 

rates for onshore wind should explore how outcomes are affected by higher (i.e. more 

optimistic) learning rates. 

Similar problem were encountered for offshore wind (Figure 3): even though the weighted 

average prices for large offshore wind farms has been declining, underlying prices differed 

largely by country, and e.g. in Denmark have also increasing significantly over time. But also 

here, various (market) effects have been influencing these trends, and also for offshore wind, 

dramatic cost reductions have recently been reported, with claims that wind farms can be built 

without subsidy (Pfeifer, 2018). Thus, the learning rates found should be considered as 

uncertain, and offshore learning rates used in energy models should be subjected to sensitivity 

analysis.  
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Figure 3: Comparison of experience curve data for wind energy: onshore systems, offshore systems and 
turbine price indices. Data sources: Own data collection (offshore), WTMR (Wyser & Bolinger, 2016; Wyser 
& Bolinger, 2017), BNEF turbine price (Wyser & Bolinger, 2017). 

Another energy-producing technology covered by the REFLEX project’s work on experience 

curves is the Proton Exchange Membrane Fuel Cell (PEFC) micro-CHP. For this technology, 

only one dataset from Japan was found, which however shows a constant decline of costs with 

a learning rate of about 19%. This trend has also a fairly low error, and so is recommended to 

be sued in models. However, ideally more studies (also for other type of fuel cells) are needed 

to validate this trend.   

With the expected strong increase of electricity from intermitted sources, assessment of 

storage technologies becomes more and more important. Production of hydrogen (and other 

power-to-X technologies) may play an important role to buffer excess electricity supply and 

produce green fuels and chemicals. As alkaline electrolysis is a technology that has been 

increasingly deployed since the 1980’s, it was possible to establish an experience curve, 

revealing learning curves of about 18%. However, the (so far) limited amount of data – 

especially for the early phases of production, makes this trend somewhat uncertain, and 

warrants more investigation into the underlying reasons for cost reductions and additional data 

points. 

Lithium and Redox-Flow batteries are also increasingly deployed on a global level, and are 

expected to become even more important both for stationary use and in electric cars (see 

below). Learning rates found by recent studies and own analysis are in the range of 12-18% 

(with most values around 15%). The results are shown in Figure 4. While these cannot always 

be compared directly with each other (e.g. due to varying size and application), data availability 

is high and trends are deemed fairly robust, thus making them suitable for implementation in 

energy models. 

Closely linked to battery costs, the future cost development of electric cars will be of major 

important for models focussing on transport. The experience curves and datasets for the three 

vehicle types considered (BEVs, HEVs and FCEVs) are showing learning rates (for the battery-
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part only of the car) between 10-18%. The highest learning rate is observed for fuel cell stacks 

(18%), while hybrid EV batteries only have a learning rate of 10%, and full electric EV batteries 

are estimated to have a learning rate of 15.2±2.9%. Give the limited error found for these 

learning rates, they are deemed applicable in energy models, even though the datasets on 

which they are based are quite small.  

 

Figure 4: Experience Curves for energy storage technologies. Data source: Schmidt et al, 2017; Sandia 
National Laboratories, 2015; IRENA, 2017a.  

Heat pumps are another important energy-demand technology, expected to play a major role 

in future heating applications. Despite this expected increase, and the fact that heat pumps 

have been around for decades, only one study by Weiss et al. (2008) was found. The study by 

Weiss et al. revealed a very constant decline of costs with a learning rate of 26% (±0.36%). 

However, own investigation for heat pump prices in the Netherlands showed that the heat 

pump price in the Netherlands for the year 2011 was higher by a factor of 1.2 than the Swiss 

heat pump price in the year 2004, and also the learning rate found (11%) was far lower than 

the Swiss rate (but also measured over a much shorter time period). This shows again that 

prices may differ significantly between countries, and use of learning rate form just one 

study/country in global or European energy models is not generally recommended. More data 

for heat pumps should be gathered, and at the same time application in energy models of 

these learning rates should be subject to thorough sensitivity analysis.  

Finally, various CCS-related energy production technologies are expected to be deployed 

widely in the coming decades according to the projections of many integrated assessment 

models. However, due to the (almost) complete lack of actual CCS projects developed over 

the past decade, there is little more than studies that try to anticipate the potential cost 

reductions using proxy technologies. While this may be the only feasible way until more 

empirical data becomes available, it also means that any learning rates used to project future 

cost reductions should be used with care. 

Overall, we conclude that for most technologies, experience curves can be implemented in 

energy models, but due care needs to be taken, assessing amongst other things the impact of 

uncertainty of the various learning rates.  
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2.3 Cost Outlook for Selected Technologies 

Using the experience curves derived from the data gathered within REFLEX, it becomes 

possible to extrapolate future costs of technologies, using exogenous data that describes the 

future developments of cumulative deployments of the respective technologies. Several 

energy outlook scenarios, which are often the result of complex modelling activities, describe 

what these future developments will look like. Some of these outlook scenarios, such as the 

International Energy Agency’s “World Energy Outlook” (IEA WEO), attempt to model global, 

total energy demand and supply (IEA, 2018). Many other models exist that develop scenarios 

on smaller geographical scales and/or for sub-sectors of global or local energy systems. 

Finally, technology specific scenarios are very common, developed by industry collaborations 

such as SolarPowerEurope, financial institutions, energy research institutes and data and 

statistics firms, among others. In this section we highlight some of the previously discussed 

technologies, being PV systems, electricity storage, and electric vehicle li-ion batteries, and 

extrapolate current costs to 2030, based on several scenarios. All mentioned prices are in 

2015 Euros.  

For PV we analyse two PV system scales: under 10 kW, and between 10 and 100 kW. In the 

IEA WEO “Sustainable Development Scenario”, which aims to achieve climate and 

sustainability targets, the projected cumulative PV capacity in 2030 would be 2346 GW, as 

opposed to 401 GW at the end of 2017. As a result of this strong increase in PV capacity, 

prices are expected to drop to 0.77-0.89 EUR/Wp for residential systems under 10 kW, and to 

0.46-0.62 EUR/Wp for systems between 10 and 100 kW. This latter figure should be 

scrutinised however, since it is based on the total system price developments for systems as 

shown in Figure 2.The extrapolations are shown in Figure 5 and Table 2. Extrapolating these 

costs based on the experience curves for modules and BOS components separately, results 

in a 2030 PV system cost of 0.72-0.86 EUR/Wp. This mainly results from the much smaller 

Figure 5: Cost extrapolations for PV systems. All prices are in 2015EUR/Wp. 
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learning rate for BOS components, but also from the fact that in this case the lower learning 

rate obtained for modules over a longer period was used. A similar approach should be used 

for the residential data.  

Table 2: Overview of cost extrapolations for selected technologies 

Technology 2030 deployment Baseline extrapolation 
(2015EUR) 

 Range  

PV System <10kW 2346 GWpa 0.83  0.77-0.89 EUR/Wp 

PV System 10-100 kWb 2346 GWpa 0.53  0.46-0.62 EUR/Wp 

PV System 10-100 kWc 2346 GWpa 0.79  0.72-0.86 EUR/Wp 

PV BOS 10-100kW system 2346 GWpa 0.44  0.39-0.49 EUR/Wp 

PV modules 10-100kW system 2346 GWpa 0.35  0.33-0.37 EUR/Wp 

Li-ion Residential 280 GWhd 363  304-430 EUR/kWh 

Li-ion Utility 180 GWhe 274  220-340 EUR/kWh 

Redox-Flow Utility 60 GWhe 351  316-388 EUR/kWh 

Li-ion Electric Vehicles 2195 GWhd 90  65-123 EUR/kWh 
aBased on IEA WEO “Sustainable Development Scenario” (IEA, 2018) 
bCalculation based on whole system experience curve 
cCalculation based on experience curves of BOS and modules separately 
dBased on the S-curve approach as shown in Schmidt et al., 2017 
eBased on the S-curve approach as shown in Schmidt et al., 2017; assuming a market share of 75% for li-ion and 

25% for Redox-Flow in utility applications 

For batteries (stationary and electric vehicle li-ion batteries), significant cost reductions can be 

expected for 2030. As shown in Figure 6 and Table 2, especially the forecasted growth of the 

electric vehicle market is large. As a result, EV battery prices are expected to drop to 90 

EUR/kWh, with an uncertainty range from 65-123 EUR/kWh. Residential and utility scale 

stationary li-ion storage systems are extrapolated to drop in price to 304-430 EUR/kWh and 

220-340 EUR/kWh, respectively, while Redox-Flow utility scale storage systems extrapolate 

to 316-388 EUR/kWh. Apparent clearly in Figure 6, when examining the last 3-4 data points 

for utility li-ion storage and EV batteries, is that it seems the price decrease is accelerating. 

This could be due to market dynamics (e.g. balance between supply and demand), but could 

also be a result of spillover effects in different li-ion markets.    

Figure 6: Experience curves and cost extrapolations for different types of batteries. Data source: Schmidt 
et al, 2018. 
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3 Conclusions and policy recommendations 

Within the REFLEX project, historical cost data was collected for several energy technologies. 

From this data, where possible, experience curves were derived. In this policy brief, an 

overview is given of the work performed and results obtained. The experience curves have 

been implemented in different energy models that will analyse the future of the European 

energy system in different sectors, including power supply and demand for industry and 

residences, heat supply and demand, and transportation. Further research will be performed 

on the datasets that were produced by the REFLEX consortium for technologies not reported 

here, for dissemination in a follow-up publication from the REFLEX project. 

Although experience curves are typically based on historical data, they offer one of few 

methods that can be used for evidence-based cost projections for the future. Especially for 

upcoming technologies, however, there are often issues with data availability and/or accuracy 

of the devised experience curve parameters. The work performed has found several issues in 

this respect, which have been systematically assessed, resulting in several recommendations 

to take into account for further research as well as when applying the results obtained. These 

recommendations are detailed below. 

For many technologies, availability of consistent time series data for cost developments is an 

important issue. Many of the technologies that are often named as key in meeting greenhouse 

gas emission reduction targets, like carbon capture and storage, wind power, electric transport 

and electricity storage, are sometimes characterised by a very limited availability of data. For 

carbon capture and storage, and some electricity storage technologies, there is even a 

complete lack of empirical, commercial scale data. As a result, establishing learning curves 

and using these for evidence-based cost estimations is still difficult (or even impossible), 

requiring approximations e.g. through the comparison with similar technologies. Since many 

of these and other upcoming and promising decarbonisation technologies are currently 

supported by policy makers in many different countries, there should be a push for more 

research in better estimating the likely production cost developments of these technologies.  

Research has shown, and our results also indicate, that among other factors, market dynamics 

and raw material prices can significantly affect technology costs (and market prices) and thus 

established experience curve parameters are affected by these non-technological learning 

related factors. Further research should investigate how multi-factor experience can be 

implemented in energy modelling. Multi-factor learning curves may at least partially address 

market effects, e.g. by taking explicitly into account the increase of cost for raw materials (e.g. 

steel, gold and other metals, concrete, plastics etc.), scale effects and other factors. On the 

other hand there needs to be a balance between the additional modelling complexity and input 

data requirements vs. the possible increase of the accuracy with which technological learning 

can be modelled and cost estimations can be made. Within the REFLEX project, these issues 

will be investigated to be included in a follow-up publication. 

Another issue related to implementing technological learning in energy modelling relates to the 

difficulty with which this process can be modelled endogenously. Since technological learning 

is normally considered to be a process that occurs on a global scale, experience curves should 
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be derived based on global cost developments. Many of the energy models analysed within 

REFLEX are however of a smaller (EU or country-level) geographical scale. Hence, depending 

on the assumptions of the market shares of a certain technology for the geographical region 

within and outside of the model, fully endogenous modelling is basically not possible for most 

of these models, and requires assumptions on e.g. global developments of cumulative 

deployments.  

For some of the technologies presented here, it is fair to assume that their cost developments 

influence each other. For instance, all technologies based on lithium-ion batteries in different 

applications (electronics, electric vehicles, electricity storage) likely benefit from each other’s 

developments since they share common components. These spill-over effects are easy to 

theorise on, but difficult to account for in modelling and experience curve analysis. One way to 

approach it is to break down the costs of these related technologies to their components and 

devise experience curves on a component basis. This will however drastically increase 

modelling complexity, as well as having much broader data requirements to be able to 

establish experience curves. Furthermore, while time series of cost or price data for end 

products are already difficult to obtain, data on the cost of components of these products is 

even less transparently available. Further research should try to establish what kind of 

accuracy improvements could reasonably be expected with this more detailed approach, and 

weigh this against the added data requirements and increase of modelling complexity.  

In terms of policy implications, we highlight the following issues:  

 As a prime and major conclusion, we can state that all energy technologies 

investigated show production cost declines with cumulative production. Many of 

these technologies have been supported both by public R&D and deployment 

support. Without such support, technologies such as wind and solar energy would not 

have the level of (near) competitiveness with fossil electricity production, and their 

major role in the energy transition would not have been possible. For the coming 

decades, further cost reductions can be expected, and as such, learning 

investment will very likely be earned back. Continued support may, however, still 

be needed for technologies which have not reached full parity yet with their fossil fuel 

counterparts, e.g. heat pumps and alkaline electrolysis.     

 Especially for CCS technologies in both the power sector and industry, accurate cost 

data for experience curves is lacking, as there are hardly any large-scale plants except 

from some (very site-specific) pilot programmes. Since CCS technologies are one of 

the main ways to decarbonise especially industrial processes, policy makers should 

push for more pilots on industrial CCS while specifically making sure that 

transparent cost data will be made available. 

 Similarly, data for existing technologies (such as heat pumps, alkaline hydrolysis) 

should in principle be available but is often hard to obtain. Thus (renewable) energy 

support programs (e.g. tenders, R&D support) by governments should be 

designed as such that aside from finding the lowest bid/furthering research and 

development etc., they also create a transparent database of cost data. 

 By using the data presented for batteries, electric vehicles, governments can establish 

the best target for incentives, and make estimations on total required government 
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investments to attain a certain level of competitiveness. However, they do need to take 

into account the uncertainty associated with the small datasets that are currently 

available, hence keep track of this and push producers to give transparent cost data. 
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